2.3 RIP RAP AND APRONS

2.31 Rock Rip Rap

Insituations where velocities discharging from a drain are moderate (<15 fps), rock rip rap may be the most economical of dissipator to construct. type Aesthetically, the rock may blend into the natural environment. However, in some areas, it may be more of an evesore than a formed structure that can effectively screened with be landscaping.

There are two possible approaches. One Figure 2.31a is a horizontal apron with sufficient

length and width to allow the flows to disperse.- The other alternative would be a preformed scour hole, lined with rock.

Preformed scour holes can effectively dissipate flow energy and reduce downstream erosion. However, uncontrolled scour holes can undermine the drain and result in subsequent structural failure. A scour hole is objectionable in most areas because it collects debris and presents a safety hazard. The ponded water also breeds insects without proper maintenance.

The criteria presented in this report will be for horizontal rock rip rap aprons, and it is recommended that they be used instead of a preformed scour hole. Energy dissipation may not be as effective, but there will not be the hazards discussed above.

Sample Problem:

Given:

Storm drain discharging into a retention basin. $D_o = 36" RCP$ Q = 60 cfs $V_{a} = 8.5 \, fps$ Design a rock rip-rap apron to reduce scour

9

Solution:

Using the empirical equation

$$\frac{L_{sp}}{D_0} = 1.7 \times \frac{Q}{D_0^{5/2}} + 8$$

Yields

$$\frac{L_{sp}}{D_0} = 1.7 \times \frac{Q}{D_0^{5/2}} + 8 = 14.56$$

Solving for apron length, $L_{sp} = (3')(14.56) = 43.69'$

Use $L_{sp} = 44'$, with a flare of 1:2 (transverse:long.)

Use an upstream width = $3D_o = 9'$

Therefore, downstream width = $\frac{1}{2}L_{sp} + 3D_0 = 31'$

Find stone sizing per Chart Q-10 in the Sedimentation Manual $D_{50} = 11"$

2.32 Flared Apron with Sill

For drains with moderate flow rates and moderate velocities (< 15 fps), a flared apron with an end sill can provide a simple and effective dissipator. The apron can be constructed of concrete or rock rip rap. The apron should have a width of at least 3 pipe diameters. The divergence angle should be at least 1:1.75 if an end sill is employed (See Fig. 2.32a), and at least 1:3 without. A small channel should be cut in the sill to accommodate low flows,

EXAMPLE OF THE WAY RIP-RAP SIZES SHOULD BE SHOWN ON P.D. PLANS:

USE D50 50#	RIP-RAP
% LARGER THAN	SIZE
0-5 50-100 95-100	· 100 # 50 # 25 #

Required gradations for D-50 classification can be found on page F-33 of L.A.C.F.C.D. Hydraulics Manual.

Ry Rap Pad Thickness (11/2-Z TIMES AVG. Rack SIZE) CUT-OFF DEPTH (4'-15') * SURFACE ROCKS TO BE EXPOSED 1/2 TO 1/3

* REQUIRED CUT-OFF DEPTHS DEPENDS ON OUTLET VELOCITIES, SOIL TYPE, VEGETATION, FLOW PATE, CHANNEL * SLOPE.

- A GOOD ESTIMATE FOR CUT-OFF DEPTH IN ADSCENSE OF SOILS REPORT IS I 1/2 DEPTH SHOWN FOR CURVED REACH ON PAGE F-31 HYDRAULICS MANUAL.

LEVEE CRITERIA

Cut-Off Depths

,

Velocities	Straight Reaches	*Curved Reach	
0 - 6 f.p.s.	6-ft.	9-ft.	
6 - 10 f.p.s.	8-ft.	12-ft.	
10 - 15 f.p.s.	lo-ft.	15-ft.	
15 - 18 f.p.s.	12.5 ft.	18-ft.	
18 - 20 f.p.s.	14 ft.	21-ft.	

,'

*Check the cut off depth for curved reach on Chart F-06 on Page F-38 Use that depth if greater than given hereon.

Material and Structural Requirements

Concrete Levees (1 1/2:1 max. side slope)

	Levee Thickness - T			
Velocities	Straight Reach	Curved Reach	Reinforcing	
0 - 10 f.p.s.	6-inch	8-inch	#4 @ 18" Bothways	
10 - 20 f.p.s.	8-inch	10-inch	#4 @ 18" Bothways	

Gunite Levees (1 1/2:1 max. side slopes)

:	Levee Thickness - T		Reinforcing	
Velocities	Straight Reach Curved Reach			
0 - 10 f.p.s.	8-inch	10-inch	#4 @ 18" Bothways	

Material and Structural Requirements

Rip-Rap Levees (2:1 max. side slopes)

(Ungrouted)

1

	Rock Size	Levee Thickness - T		Filter	
Velocities	(D50 Size)	Straight Reach	Curved Reach	Thicknes	
0 - 7 f.p.s.	50 1ь. (10'')	15-inch	20-inch	6-inch	
7 - 9 f.p.s.	100 lb. (12'')	18-inch	24-inch	6-inch	
10 f.p.s.	150 1Ь. (15'')	23-inch	30-inch	9-inch	
11 f.p.s.	300 1ь. (18'')	27-inch	36-inch	9-inch	
12 f.p.s.	1/4-ton (21")	32-inch	42-inch	9-inch	
13 f.p.s.	1/2-ton (27")	41-inch	54-inch	12-inch	
13 - 15 f.p.s.	1-ton (34")	51-inch	68-inch	12-inch	
16 - 17 ⁵ f.p.s.	2-ton (43")	65-inch	86-inch	12-inch	
18 - 20 f.p.s.	4-ton (54")	81-inch	108-inch	12-inch	
(Grouted) Can be used only with special District approval					

16 - 20 f.p.s. 1-ton (34") 51-inch 68-inch 12-inch

Gabion Levees (2:1 side slopes)

Velocities	Levee Thickness (Straight or Curved Reach)	Rockfill	Wire Gage of Baskets	Apron Length
0 - 7 f.p.s.	12-inch Baskets	411 - 811	12 ga.	12 feet
8 - 10 f.p.s.	18-inch Baskets	4" - 8"	ll ga.	18 feet
11 - 15 f.p.s.	18-inch Baskets	411 - 811	11 ga.	21 feet

Gabion levees not permitted where velocities exceed 15 f.p.s.

Hyd. Man.

RIPRAP NOTES

- 1 ROCKS FOR GROUTED RIPRAP SHALL BE GOOD QUALITY BROKEN CONCRETE AND/OR RIVER RUN ROCK. THE SMALLEST DIMENSIONS SHALL EXCEED 6 INCHES AND THE LARGEST DIMENSION SHALL NOT EXCEED 24 INCHES. THE LARGEST DIMENSION SHALL NOT EXCEED 4 TIMES THE SMALLEST DIMENSION.
- 2. THERE SHALL BE A GROUT BED OF AT LEAST 2 INCHES BENEATH THE FIRST LAYER OF ROCK. ALL THE VOIDS BETWEEN THE ROCKS SHALL BE FILLED WITH GROUT. MAXIMUM SPACING BETWEEN ROCKS SHALL BE 2 INCHES.
- 3. SURFACE ROCKS SHALL BE IMBEDDED FROM 1/2 TO 2/3 OF THEIR MAXIMUM DIMENSION

NOTE: CONCRETE MAY BE SUBSTITUTED FOR THE GROUT.